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aMax-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,
Mühlenberg 1, D-14476 Potsdam, Germany
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1 Introduction

In 1936 Heisenberg and Euler derived their famous effective Lagrangian [1] describing the
effect of a virtual electron-positron pair on an external Maxwell field in the one loop and
constant field approximation. Its standard proper time representation is

Lspin(F ) = − 1
8π2

∫ ∞
0

dT

T 3
e−m

2T

[
(eaT )(ebT )

tanh(eaT ) tan(ebT )
− e2

3
(a2 − b2)T 2 − 1

]
. (1.1)

Here T is the proper-time of the loop fermion, m its mass, and a, b are the two invariants of
the Maxwell field, related to E, B by a2−b2 = B2−E2, ab = E ·B. The two subtraction
terms implement the renormalization of charge and vacuum energy.

An analogous representation was found later for scalar QED [2, 3]:

Lscal(F ) =
1

16π2

∫ ∞
0

dT

T 3
e−m

2T

[
(eaT )(ebT )

sinh(eaT ) sin(ebT )
+
e2

6
(a2 − b2)T 2 − 1

]
. (1.2)

Although the effective Lagrangian for scalar QED is due to Weisskopf and Schwinger, for
simplicity we will call it the “Scalar Euler-Heisenberg Lagrangian”.

The Lagrangians (1.1), (1.2) historically provided the first examples for the concept of
an effective Lagrangian, as well as the first nonperturbative results in quantum field theory.
Despite of their formal simplicity they contain an enormous amount of physical information
on low energy processes in QED. See [4–6] for reviews of their various applications and
generalizations.
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The proper time integrals in eqs. (1.1), (1.2) can be done exactly in terms of certain
special functions [6]. Alternatively, one can expand the integrands as power series in the
field invariants, using the Taylor expansions

z

tanh(z)
=
∞∑
n=0

B2n

(2n)!
(2z)2n , (1.3)

z

sinh(z)
= −

∞∑
n=0

(
1− 21−2n

) B2n

(2n)!
(2z)2n . (1.4)

Here the B2n are Bernoulli numbers. The terms in this expansion involving N = 2n
powers of the field contain the information on the low energy limit of the N photon scat-
tering amplitudes, defined by all photon energies being small compared to the loop mass,
ωi � m, i = 1, . . . , N . In this limit the effective Lagrangian allows one to obtain these
amplitudes in closed form and with moderate effort [7]. This should be contrasted with
the fact that, away from the low energy limit, the calculation of these amplitudes for gen-
eral N still presents a challenge. The four photon scattering amplitudes were obtained a
long time ago [8], but the explicit calculation for the six-point case became possible only
recently [9]. Beyond six points, results are essentially restricted to the massless case, where
the amplitudes with N or N − 1 equal helicities are known to vanish [10] and an explicit
result has been obtained for N − 2 equal helicities [11]. These massless N photon ampli-
tudes are presently under intensive investigation (see the recent [12] and refs. therein).
Regarding the off-shell case, to our knowledge even the four point amplitude is known only
with maximally two legs off-shell [13].

Apart from the purely magnetic field case, the Euler-Heisenberg Lagrangians have also
imaginary parts, induced by the poles which the integrands in (1.1), (1.2) have for b 6= 0.
A simple application of Cauchy’s theorem yields Schwinger’s representation [3]

ImLspin(E) =
m4

8π3
β2

∞∑
k=1

1
k2

exp
[
−πk
β

]
,

ImLscal(E) =
m4

16π3
β2

∞∑
k=1

(−1)k+1

k2
exp

[
−πk
β

]
(1.5)

with β = eE
m2 . These imaginary parts directly relate to the rates of electron-positron pair

production by the electric field [3, 6]. The representation (1.5) makes it clear that this
effect is nonperturbative in the field; its calculation requires the knowledge of the effective
action to all orders in the weak field expansion.

Concerning higher loop corrections to the Lagrangians (1.1), (1.2) see [4, 14–16] for
the spinor and [15–18] for the scalar case. For extensions to super QED see [19, 20].

In the present article, we will study the corrections to the Euler-Heisenberg La-
grangians (1.1), (1.2) due to an additional weak gravitational background. This amounts
to calculating the one-loop effective actions for a generic Einstein-Maxwell background due
to a scalar or spinor loop, to all orders in the electromagnetic field strength, and to leading
order in the curvature.
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A sizable body of work exists already on the one-loop effective action in mixed gravita-
tional-electromagnetic fields. Drummond and Hathrell in their seminal work [21] obtained
the terms in the fermionic effective Lagrangian involving one curvature tensor and two field
strength tensors:

L(DH)
spin =

1
180(4π)2m2

(
5RF 2

µν − 26RµνFµαF να + 2RµναβFµνFαβ + 24(∇αFαµ)2

)
(1.6)

(here and in the following we will often absorb the electric charge e into the field strength
tensor F ). The motivation of [21] for considering these terms was that they contain in-
formation on the modification of the photon dispersion relation by a generic gravitational
background. While it is well-known that such modifications exist already in the pure QED
case [5], the gravitational case is particularly interesting in that it permits superluminal
propagation [22, 23], leading even to speculations on a possible violation of microcausal-
ity [24]. However, as emphasized in [25] these issues cannot be resolved at the level of the
low-energy effective action since this would require information on the photon propagation
in the full energy range.

As usual, a systematic computation of this effective action for either the scalar or spinor
loop cases requires one to decide on the grouping of terms, the three basic options being

1. Summing over all derivatives on fields with the number of fields fixed.

2. Grouping together terms with a fixed mass dimension.

3. Fixing the number of derivatives and summing over the number of fields.

The first approach is usually called “derivative expansion”. For our mixed electromagnetic-
gravitational case, higher derivative corrections to the effective action (1.6) due to a scalar
loop were considered in [26]. Those corrections can be summed up into “Barvinsky-
Vilkovisky form factors”, which are closed-form integral expressions involving Schwinger-
parameter type integrals. See the recent [27] for the state-of-the-art of this approach.

The second one corresponds to the standard heat-kernel or “inverse mass” expansion.
It is the most canonical one of the three in the sense that it is manifestly gauge and
generally covariant order by order. The heat-kernel expansion of the one-loop effective
action is usually written as

Γ[g,A] =
∫ ∞

0

dT

T
e−m

2T

∫
dDx
√
g

(4πT )
D
2

∞∑
n=0

an(x)Tn (1.7)

where D is the space-time dimension and an(x) are the “heat-kernel coefficients”. In
D = 4 dimensions, the terms with n = 0, 1, 2 are UV divergent at T = 0, so that the
corresponding coefficients are subject to renormalization. For our case of the Einstein-
Maxwell background with a spin 0 or spin 1/2 loop the coefficients can, up to a3, be
obtained from more general results on the heat-kernel expansion [28, 29]. They are, for the
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scalar case1

a0 = 1 ,

a1 =
(1

6
− ξ
)
R ,

a2 = − 1
12
F 2
µν ,

a3 =
1

360

[
5(6ξ − 1)RF 2

µν + 4RµνFµαF να − 6RµναβFµνFαβ

−2(∇αFαµ)2 − 8(∇αFµν)2 − 12Fµν Fµν
]

(1.8)

and for the spinor case,

a0 = −2 ,

a1 =
1
6
R ,

a2 = −1
3
F 2
µν ,

a3 =
1

180

[
5RF 2

µν − 4RµνFµαF να − 9RµναβFµνFαβ

+2(∇αFαµ)2 − 7(∇αFµν)2 − 18Fµν Fµν
]
. (1.9)

Here the terms a0, a1, a2 contribute to the renormalization of the vacuum energy, Newton’s
constant, and electric charge, respectively.

The expression (1.9) for the spinor case is equivalent to the one in (1.6), as can be seen
by adding suitable total derivative terms; we will discuss this issue in section 5 below. The
scalar case result (1.8) in this explicit form is new, as far as we know.

The third choice amounts to a generalization of the Euler-Heisenberg Lagrangian,
the object of interest in this paper. Contrary to the pure QED case, for Einstein-Maxwell
theory it is not obvious how one should define the effective Lagrangian for constant external
fields, since the notion of constancy becomes ambiguous in curved space. To the best of our
knowledge, the only previous attempt to treat the electromagnetic field and/or gravitational
field nonperturbatively is due to Avramidi [30, 31]. This author generalizes the constancy
of F to the covariant constancy of F and R,

∇αFµν = ∇αRµνκλ = 0 . (1.10)

For a background obeying (1.10) he obtains an Euler-Heisenberg type formula for the
effective Lagrangian. However, the conditions (1.10) are rather strong, and imply, for
example, also a consistency condition between F and R, since

∇αFµν = 0 → [∇α,∇β]Fµν = 0 → RαβµλF
λ
ν −RαβνλF λµ = 0 . (1.11)

1To obtain the scalar loop coefficients from appendix B of [29], replace E → −ξR and Fab → iFab.

Here the parameter ξ describes a non-minimal coupling to gravity. To obtain the spinor loop ones, replace

E → − 1
4
R+ i

2
Fabγ

aγb and Fab → 1
4
Rabcdγ

cγd + iFab.

– 4 –
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This strongly suggests that the effective action for this special case can carry only some
partial information on the low energy limit of the corresponding amplitudes, i.e. the one-
loop one particle irreducible (“1PI”) off-shell photon-graviton amplitudes involving a scalar
or spinor loop. In the present paper, we adopt a more general definition of a curved-space
Euler-Heisenberg Lagrangian (“EHL”) by demanding that, like the QED EHL, it should
contain the minimum set of terms in the covariant effective Lagrangian which would have
the full information on the low-energy limit of the corresponding 1PI amplitudes. As
usual in the graviton case, the amplitudes must be defined by linearizing gravity around
flat Minkowski space. We will explicitly calculate the generalized EHL’s for Einstein-
Maxwell theory to linear order in the curvature, corresponding to the 1PI photon-graviton
amplitudes with any number of photons but not more than one graviton. It is easily seen
that this truncation corresponds to keeping all terms in the covariant effective Lagrangian
which involve any number of electromagnetic field strength tensors, together with up to
one factor of the curvature tensor, where this curvature tensor could also be replaced by
two covariant derivatives. In this calculation, we use the recently completed extension of
the worldline formalism [32–36] to curved space [37–41] made manifestly covariant by using
Riemann normal coordinates and Fock-Schwinger gauge.

The structure of this paper is as follows. In section 2 we summarize the worldline algo-
rithm for the calculation of one-loop effective actions in mixed gravitational-electromagnetic
fields. The calculation of the generalized Euler-Heisenberg Lagrangian is presented in 3 for
the scalar and in 4 for the spinor loop case. In 5 we compare with previous work and discuss
possible applications of these Lagrangians. We summarize our findings in section 6. Our
differential geometry conventions are given in appendix A, where we also collect some use-
ful formulas. In appendix B we discuss some properties of the worldline Green’s functions
in a constant field, to be introduced below.

2 Worldline representation of the effective action in Einstein-Maxwell

theory

Let us start with the (euclidean) effective action for a complex scalar field φ coupled to
electromagnetism and gravity,

S[φ, φ∗; g,A] = −
∫
dDx
√
g
[
gµν(∂µ − ieAµ)φ∗(∂ν + ieAν)φ+ (m2 + ξR)φ∗φ

]
(2.1)

where ξ describes an additional non-minimal coupling to the scalar curvature R. Quanti-
zation produces the following effective action (Z[g,A] = eΓ[g,A] =

∫
DφDφ∗ eS[φ,φ∗;g,A])

Γ[g,A] = ln det−1(− A +m2 + ξR) = −Tr ln(− A +m2 + ξR) (2.2)

where A is the gauge and gravitational covariant laplacian for scalar fields. It can be
represented by the following worldline path integral (see, e.g., [37, 38])2

Γ[g,A] =
∫ ∞

0

dT

T

∫
PBC

Dx e−S[xµ;g,A] (2.3)

2Note that our definition of the global sign of the effective action follows [36] rather than [38, 42]. It

corresponds to a euclidean tree level action Γ = −
R
d4x
√
g 1

4
F 2
µν .

– 5 –
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where

S[xµ; g,A] =
∫ 1

0
dτ

(
1

4T
gµν(x)ẋµẋν + ieAµ(x)ẋµ + T (ξR(x) +m2)

)
. (2.4)

Here T is the proper-time of the loop particle, and the path integral is to be performed
over all closed loops in spacetime x(τ) with periodic boundary conditions x(1) = x(0).

Following the “string-inspired” procedure [32–35] we will evaluate the path integral∫
Dx(τ) by manipulating it into gaussian form, using a double expansion. First, one

Taylor expands the external fields at some point x0 [35, 43–46]. This is most conveniently
done in covariant form, i.e., using a combination of Fock-Schwinger gauge and Riemann
normal coordinates [46, 47]:

gµν(x = x0 + y) = gµν(x0) +
1
3
Rµαβν(x0) yα yβ + · · · (2.5)

Aµ(x = x0 + y) = −1
2
Fµν(x0) yν − 1

3
Fµν;α(x0) yν yα − 1

8

[
Fµν;αβ(x0)

+
1
3
Rαµ

λ
β(x0)Fλν(x0)

]
yα yβ yν + · · · (2.6)

(see appendix A for our Riemannian geometry conventions). The worldline action then
takes the form

S[xµ;R,F ] =
1

4T

∫ 1

0
dτ ẏµ(τ)gµν(x0)ẏν(τ) + Sint[xµ;R,F ] (2.7)

where Sint[xµ;R,F ] contains an infinite number of interaction terms. In principle, all these
interaction exponentials are to be expanded out, although realistically the arising multiple
series has to be truncated to some desired level. Usually this truncation will be either in
the number of fields, in the number of derivatives, or in the mass dimensions.

Next, one has to fix the zero mode of the path integral, due to translation invariance
in spacetime. There are two standard ways of doing this, both using a restriction of the
path integration to fluctuations around the expansion point x0,

xµ(τ) = xµ0 + yµ(τ), (2.8)

where the path integral measure is split into

Dx =
dDx0

√
g(x0)

(4πT )
D
2

Dy . (2.9)

The choice is in the constraints imposed on y(τ), which are either Dirichlet boundary
conditions

y(0) = y(1) = 0 (2.10)

meaning that x0 is on the loop (“DBC scheme”), or the “string-inspired” condition (“SI
scheme”) ∫ 1

0
dτ yµ(τ) = 0 (2.11)

– 6 –
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�x0
Figure 1. DBC scheme.

�x0
Figure 2. SI scheme.

which makes x0 the center of mass of the loop, see figures 1 and 2.
The DBC scheme leads to a worldline propagator

〈yµ(τ)yν(σ)〉=−2Tgµν(x0)∆(τ, σ) (2.12)

where

∆(τ, σ) =
∞∑
m=1

[
− 2
π2m2

sin(πmτ) sin(πmσ)
]

= (τ − 1)σ θ(τ − σ) + (σ − 1)τ θ(σ − τ) .

(2.13)

The propagator in the SI scheme is

〈yµ(τ)yν(σ)〉=−Tgµν(x0)GB(τ, σ) (2.14)

where

GB(τ, σ) = 2
∞∑

m=−∞
m6=0

e2iπm(τ−σ)

(2iπm)2
= |τ − σ| −

(
τ − σ

)2
− 1

6
. (2.15)

For gauge theory in flat space, either propagator can be chosen for a straightforward
perturbative calculation of the one-loop effective action via formal gaussian integration.3

The effective Lagrangian obtained in the DBC scheme coincides with the heat kernel result,
while the SI scheme differs from it, but only by total derivative terms [36, 43, 44]. Thus
both schemes are completely equivalent, but the SI scheme is computationally preferable,
since it preserves the translation invariance in the proper-time.

Proceeding to the inclusion of gravitational backgrounds, here a number of mathemat-
ical difficulties arise which are not present in flat space, starting with the observation that
the structure of the worldline Lagrangian (2.4) generically leads to ill-defined expressions
involving, e.g., δ(0), (δ(τ − σ))2, . . . in a gaussian integration. A completely satisfactory
formalism for dealing with these issues has emerged only in recent years [48–53]. Here we
can only sketch the procedure; a brief discussion appears in [54] and all the details can be
found in [37].

First, in curved space the path integral measure is nontrivial. Following [48, 49] we
exponentiate it as follows,

Dx = Dx
∏

0≤τ<1

√
det gµν(x(τ)) = Dx

∫
PBC

DaDbDc e−Sgh[x,a,b,c], (2.16)

3In flat space calculations the constant − 1
6

in GB does not affect physical quantities and is therefore

usually omitted.

– 7 –
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with a ghost action

Sgh[x, a, b, c] =
∫ 1

0
dτ

1
4T

gµν(x)
[
aµ(τ)aν(τ) + bµ(τ)cν(τ)

]
. (2.17)

After the replacement of gµν(x) by its normal coordinate expansion (2.5) the correlators
of these ghost fields just involve δ functions,

〈aµ(τ)aν(σ)〉 = 2Tgµν(x0)δ(τ − σ),

〈bµ(τ)cν(σ)〉 = −4Tgµν(x0)δ(τ − σ) . (2.18)

The ghost field contributions will cancel all ill-defined divergent terms of the type mentioned
above, arising from the Wick contractions of the coordinate fields. This cancellation of
infinities generally still leaves integrals with ambiguities. A basic example is∫ 1

0
dτ

∫ 1

0
dσ δ(τ − σ)θ(τ − σ)θ(σ − τ) . (2.19)

This type of integral requires a regularization, and different regularizations will assign
different finite values to it [37].

From the point of view of one-dimensional quantum field theory, we are dealing here
with a theory which, without the terms from the nontrivial path integral measure, would
be UV divergent but super-renormalizable. Including those terms removes all divergences,
but leaves finite ambiguities, so that agreement with standard spacetime QFT is reached
only after adding a finite number of counterterms with finite, regularization-dependent
coefficients. The method which we will adopt here is (one-dimensional) dimensional reg-
ularization [52, 53], since it is presently the only known regulator which preserves the
general covariance. It needs only a single counterterm proportional to the curvature scalar,
−R/4 in the present notations. Therefore in this scheme the only effect of the spurious UV
divergences is a change of the parameter ξ in the worldline Lagrangian (2.4) into ξ̄,

ξ̄ := ξ − 1
4
. (2.20)

A further subtlety shows up if one wishes to combine the SI scheme with the use of the
Riemann-Fock-Schwinger expansion (2.5), (2.6). As is well-known, this expansion is useful
only for the calculation of covariant quantities; when applied to non-covariant quantities, it
yields a result which is formally covariant but correct only in Riemann normal coordinates.
The DBC scheme in curved space still yields the same effective Lagrangian as the standard
heat-kernel method, and thus also guarantees covariance. This does not extend to the
SI scheme, since it turns out that the total derivative terms by which the SI effective
Lagrangian differs from the DBC one generally are not covariant [38, 55]. A solution to
this problem convenient for actual calculations was found in [39]. There it was shown that,
using Riemann normal coordinates from the beginning and performing a BRST treatment
of the symmetry corresponding to a shift of x0, the difference between the two effective
Lagrangians can be reduced to manifestly covariant terms. This is achieved by the addition
of further Fadeev-Popov type terms to the worldline Lagrangian in the “string-inspired”

– 8 –



J
H
E
P
0
3
(
2
0
0
9
)
0
8
6

scheme. Those terms are infinite in number but easy to determine order by order. In our
present approximation, this Fadeev-Popov action can be truncated as

SFP = −η̄µ
∫ 1

0
dτ Qµν (x0, y(τ)) ην (2.21)

where

Qµν(x0, y) = δµν +
1
3
Rµαβν(x0) yαyβ + . . . . (2.22)

The propagator for the (constant) ghost fields η, η̄ is trivial,

〈ηµη̄ν〉 = −δµν . (2.23)

Having concluded our discussion of the scalar loop case, we proceed to the case of a
spin 1/2 particle in the loop. The euclidean action for a Dirac field Ψ coupled to electro-
magnetism (Aµ) and gravity (eµa) is given by

S[Ψ, Ψ̄; e,A] = −
∫
dDx e Ψ̄( /∇+m)Ψ (2.24)

where eµa is the vielbein, e = det eµa, ωµab is the spin connection, and

/∇ = γaea
µ∇µ , ∇µ = ∂µ + ieAµ +

1
4
ωµabγ

aγb . (2.25)

The effective action depends on the background fields eµa and Aµ, and formally reads as
(eΓ[e,A] ≡

∫
DΨDΨ̄ eS[Ψ,Ψ̄;e,A] = Det( /∇+m))

Γ[e,A] = ln Det( /∇+m) = ln[Det( /∇+m)Det(− /∇+m)]
1
2

=
1
2

Tr ln(− /∇2 +m2)

=
1
2

Tr ln
(
− A +m2 +

1
4
R
)
. (2.26)

A worldline path integral representation for this effective action can be written in a
manifestly local Lorentz invariant way [40] (i.e. in terms of the metric rather than the
vielbein)

Γ[g,A] = −1
2

∫ ∞
0

dT

T

∫
PBC
Dx
∫
ABC
Dψ e−S[xµ,ψµ;g,A] (2.27)

with

S[xµ, ψµ; g,A] =
∫ 1

0
dτ

[
1

4T
gµν(x)ẋµẋν + ieAµ(x)ẋµ + T

(
1
4
R(x) +m2

)
+

1
2T

(
gµν(x)ψµψ̇ν − ∂µgνλ(x)ψµψν ẋλ

)
− ieFµν(x)ψµψν

]
. (2.28)

Note that the bosonic term appearing in the first line is the same as for a scalar particle with
ξ = 1

4 , see eq. (2.4) and (2.20), while the second term contains the worldline fermions and

– 9 –
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describes the dependence on the spin of the particle. This action also makes it clear that
there are only linear couplings of the spin 1/2 particle to the metric gµν . The worldline fields
ψµ(τ) are Grassmann valued and antiperiodic, ψ(1) = −ψ(0). The free spin path integral is
normalized as 2D/2. (Note also that our ψµ corresponds to

√
Tψµ in the conventions of [36].)

Again we gaussianize the double path integral in (2.27) by the use of the Riemann-
Fock-Schwinger expansion (2.5), (2.6). Now also the expansion of Fµν is needed, which
follows from (2.6):

Fµν(x0 + y) = Fµν(x0) + Fµν;α(x0) yα +
1
2
Fµν;αβ(x0) yα yβ

+
1
6

(
Rαµ

λ
β(x0)Fλν(x0) +Rαν

λ
β(x0)Fµλ(x0)

)
yα yβ + . . . (2.29)

Eq. (2.7) generalizes to

S[xµ, ψν ;R,F ] =
1
T

∫ 1

0
dτ

[
1
4
ẏµ(τ)gµν(x0)ẏν(τ) +

1
2
ψµ(τ)gµν(x0)ψ̇ν(τ)

]
+Sint[xµ, ψν ;R,F ] . (2.30)

The propagator of the worldline fermions then becomes

〈ψµ(τ)ψν(σ)〉= 1
2
Tgµν(x0)GF (τ, σ) (2.31)

where

GF (τ, σ) = 2
∞∑

m=−∞

eiπ(2m+1)(τ−σ)

iπ(2m+ 1)
= sign(τ − σ) . (2.32)

Note that, due to the antisymmetry of the spin path integral, there is no zero mode and
thus no related ambiguity for this propagator.

Like the bosonic path integral measure, the fermionic one is nontrivial in curved space,
leading to a generalization of (2.16) to

DxDψ = DxDψ

∫
PBC

DaDbDc

∫
ABC

Dα e−Sgh[x,a,b,c,α], (2.33)

where the ghost action now is

Sgh[x, a, b, c, α] =
∫ 1

0
dτ

1
4T

gµν(x)
[
aµ(τ)aν(τ) + bµ(τ)cν(τ) + 2αµ(τ)αν(τ)

]
. (2.34)

The correlator of the new ghost field αµ(τ) is, after the normal coordinate expansion,

〈αµ(τ)αν(σ)〉 = Tgµν(x0)δ(τ − σ) . (2.35)

Again there are cancellations of ill-defined divergent terms between the ψ and the α path
integrals, forcing one to choose a regularization and possibly leading to a modification
of the counterterms introduced for the spinless worldline Lagrangian above. However, it
turns out that in dimensional regularization this does not happen; the sole counterterm
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−1
4R remains also the correct one for the spin 1/2 case [40]. Its effect is just to remove

the term linear in R which was there in the initial worldline Lagrangian (2.28). Other
regularizations have been discussed in [56].

In principle, this is all one has to know for calculating the one-loop effective action
for spin 0 or spin 1/2 particle in the Einstein-Maxwell background, or the corresponding
amplitudes [38, 40]. However, since we are aiming at a result which is nonperturbative in
the electromagnetic field, for us the following modification will be essential: Note that the
leading terms of the Fock-Schwinger expansions (2.6) and (2.29) yield terms in Sint which
are quadratic in the worldline fields. Thus instead of using them in the interaction part one
can absorb them in the worldline propagators. In the SI scheme this leads to the following
change of the correlators (2.14), (2.31) [15, 57, 58],

〈yµ(τ)yν(σ)〉 = −TGµνB (τ, σ) ,

〈ψµ(τ)ψν(σ)〉 =
1
2
TGµνF (τ, σ) . (2.36)

The new worldline propagators are trigonometric functions of the field strength matrix F ,
and thus, in general, nontrivial Lorentz matrices:

GµνB (τ1, τ2) =
[

1
2(FT )2

(
FT

sin(FT )
e−iFTĠB12 +iFTĠB12− 1

)]µν
,

GµνF (τ1, τ2) =
[
GF12

e−iFTĠB12

cos(FT )

]µν
. (2.37)

Here and in the following we abbreviate GB12 = GB(τ1, τ2) etc., and a ‘dot’ on a Green’s
function denotes a derivative with respect to the first variable. In the computation of the
power series appearing in the definitions (2.37) it should be understood that indices are
raised and lowered with the metric gµν(x0).

Finally, the free gaussian path integrals get also modified and become field-dependent;
namely, the coordinate path integral acquires a factor of det−

1
2 [sin(FT )/FT ], the spin path

integral a det
1
2 [cos(FT )]. By themselves these factors just reproduce the integrands of the

(unrenormalized) Euler-Heisenberg Lagrangians (1.1), (1.2).
This version of the formalism has already been applied extensively to the calculation of

pure QED amplitudes or effective actions in a constant background field [15, 16, 45, 59, 60].
More recently it has been used for a first calculation of the photon-graviton polarization
tensor in a constant field [42]. See also [15, 61–63] for an extension to the nonabelian case.

3 Calculation of the effective Lagrangian: scalar loop

In the following we specialize to the SI scheme. According to the above, the worldline
representation of the effective Lagrangian for the scalar loop in D = 4 dimensions in this
scheme can be written as4

Lscal =
1

16π2

∫ ∞
0

dT

T 3
e−m

2Tdet−
1
2

[sin(FT )
FT

]〈
e−Sint[x

µ,a,b,c,η;R,F ]
〉
. (3.1)

4In the following it is understood that all spacetime fields are sitting at the expansion point x0, and

Γ =
R
d4x0
√
gL.
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In our one-graviton approximation, the worldline interaction Lagrangian can be trun-
cated as

Sint = Sgrav + Sem + Sem,grav + Sgh + SFP , (3.2)

Sgrav + Sgh = T ξ̄ R+
1

12T

∫ 1

0
dτRµαβνy

αyβ
[
ẏµẏν + aµaν + bµcν

]
, (3.3)

Sem =
∫ 1

0
dτ

[
− i

3
Fµν;αẏ

µyνyα − i

8
Fµν;αβ ẏ

µ yν yα yβ
]
, (3.4)

Sem,grav = − i

24

∫ 1

0
dτRαµ

λ
βFλνy

ν yα yβ ẏµ, (3.5)

SFP = −1
3

∫ 1

0
dτ η̄µR

µ
αβν y

αyβ ην . (3.6)

Note that the term involving yµFµν ẏν has been omitted from Sem.
For easy reference, let us also list the complete set of worldline propagators of the SI

scheme:

〈yµ(τ)yν(σ)〉 = −TGµνB (τ, σ) ,

〈aµ(τ)aν(σ)〉 = 2Tgµνδ(τ − σ) ,

〈bµ(τ)cν(σ)〉 = −4Tgµνδ(τ − σ) ,

〈ηµη̄ν〉 = −δµν , (3.7)

where GB was given in (2.37).
With all this machinery in place, it is then straightforward to obtain the following

result for the (unrenormalized) scalar loop effective Lagrangian in the one-graviton ap-
proximation,

L(SI)
scal =

1
16π2

∫ ∞
0

dT

T 3
e−m

2Tdet−1/2

[
sin(FT )
FT

]{
1− T ξ̄R+

T

3
GαβB11Rαβ

+
iT 2

8
Fµν;αβ ĠµνB11 G

αβ
B11 +

i

8
T 2 (Fµν;βα + Fµν;αβ) ĠµβB11G

να
B11

− iT
2

24
FλνR

λ
αβµ

(
ĠνµB11 G

αβ
B11 + ĠαµB11 G

νβ
B11 + ĠβµB11 G

να
B11

)
+
T

12
Rµαβν

(
ĠµαB11Ġ

βν
B11 + ĠµβB11Ġ

αν
B11 +

(
G̈µνB11 − 2gµνδ(0)

)
GαβB11

)
−T

3

6
Fαβ;γFµν;δ

∫ 1

0
dτ1

(
ĠανB12 Ġ

βµ
B12 G

γδ
B12 + Ġαν12 G

βδ
12 Ġ

γµ
B12

)}
. (3.8)

Here in the last term it is understood that τ2 = 0. Although getting (3.8) from (3.1) is a
matter of standard combinatorics, a few comments are in order:

1. In the next-to-last term in braces the δ(0) comes from the ghost sector and substracts
a δ(0) contained in G̈B11.
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2. In the last term in braces the Wick contractions produce also terms involving a
contracting among the fields inside one factor of Fµν;αẏ

µyνyα, however those have
vanishing τ1 or τ2 integrals due to (B.5). The remaining terms have been reduced to
a minimal set using integrations by parts in τ1 and the Bianchi identity (A.6).

3. The third term in braces comes from the Fadeev-Popov part SFP of the worldline
action. The inclusion of this term is necessary to obtain the equivalence with the
standard heat kernel result, to be shown in section 5 below. This confirms the formal
reasoning of [39].

4. No ambiguous integrals are encountered yet at the level of our present calculation, so
that regularization was not really necessary. This can be understood from the fact
that any arising ambiguity would have to be cancelled by regularization dependent
counterterms. Those generally involve products of Christoffel symbols [37], and can
therefore in Riemann normal coordinates appear only starting at the quadratic level
in the curvature.

4 Calculation of the effective Lagrangian: spinor loop

For the spinor loop, the analogue of (3.1) is

Lspin = − 1
8π2

∫ ∞
0

dT

T 3
e−m

2Tdet−
1
2

[tan(FT )
FT

]〈
e−Sint[x

µ,ψµ,a,b,c,α,η;R,F ]
〉
. (4.1)

The various components of the worldline interaction Lagrangian (3.2) generalize as follows:

Sgrav+Sgh =
1
T

∫ 1

0
dτ

{
1
12
Rµαβνy

αyβ
[
ẏµẏν + aµaν + bµcν + 2αµαν

]

+
1
6
Rµαβν y

α yβ ψµ ψ̇ν +
1
6

(Rµαλβ +Rµβλα)ẏα yλ ψµ ψβ
}
, (4.2)

Sem =
∫ 1

0
dτ

[
− i

3
Fµν;α

(
ẏµyν+3ψµψν

)
yα− i

8
Fµν;αβ

(
ẏµyν+4ψµψν

)
yαyβ

]
, (4.3)

Sem,grav = − i

24

∫ 1

0
dτRαµ

λ
βFλν

[
ẏµ yν + 8ψµψν

]
yα yβ . (4.4)

SFP is not modified from its form for the spinless case, eq. (3.6). In addition to the
propagators of the scalar case, (3.7), we have now also

〈ψµ(τ)ψν(σ)〉 =
1
2
TGµνF (τ, σ) ,

〈αµ(τ)αν(σ)〉 = Tgµνδ(τ − σ) . (4.5)
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The final result for the spinor loop case becomes

L(SI)
spin = − 1

8π2

∫ ∞
0

dT

T 3
e−m

2Tdet−1/2

[
tan(FT )
FT

]
×

{
1 +

iT 2

8
Fµν;αβ GαβB11

(
ĠµνB11 − 2GµνF11

)
+
iT 2

8
(Fµν;βα + Fµν;αβ) ĠµβB11G

να
B11 +

T

3
Rαβ GαβB11

− iT
2

24
FλνR

λ
αβµ

(
ĠνµB11 G

αβ
B11 + ĠαµB11 G

νβ
B11 + ĠβµB11 G

να
B11 + 4GµνF11 G

αβ
B11

)
+
T

12
Rµαβν

(
ĠµαB11Ġ

βν
B11 + ĠµβB11Ġ

αν
B11 +

(
G̈µνB11 − 2gµνδ(0)

)
GαβB11

+ĠαβB11 G
µν
F11 + ĠνβB11 G

µα
F11 − G

αβ
B11

(
ĠµνF11 − 2gµνδ(0)

))
−1

6
T 3Fαβ;γ Fµν;δ

∫ 1

0
dτ1

(
ĠανB12 Ġ

βµ
B12 G

γδ
B12 + ĠανB12 G

βδ
B12 Ġ

γµ
B12

+
3
2
GγδB12 G

αµ
F12 G

βν
F12

)}
(4.6)

where again τ2 = 0.

5 Comparison with previous results

As a check on our effective Lagrangians (3.8), (4.6), let us extract the terms corresponding
to the heat kernel coefficients a3. This can be easily done using formulas (B.12), and yields,
after performing the global proper-time integration,

L(SI)
scal =

1
16π2

e2

m2

[
1
12

(ξ̄ +
1
12

)RF 2
µν +

1
180

RµνF
µαF να

− 1
72
RµναβF

µνFαβ − 1
180

(∇αFµν)2 − 1
72
Fµν Fµν

]
,

L(SI)
spin = − 1

8π2

e2

m2

[
− 1

72
RF 2

µν +
1

180
RµνF

µαF να

+
1
36
RµναβF

µνFαβ − 1
180

(∇αFµν)2 +
1
36
Fµν Fµν

]
. (5.1)

Here the identities (A.3)–(A.5) have been used to combine some terms.

This is different from the heat kernel results (1.8), (1.9), which read, after the T
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integration,

L(HK)
scal =

1
16π2

e2

m2

[
1
12

(
ξ̄ +

1
12

)
RF 2

µν +
1
90
RµνF

µαF να

− 1
60
RµναβF

µνFαβ − 1
45

(∇αFµν)2 − 1
30
Fµν Fµν − 1

180
(∇αFαµ)2

]
,

L(HK)
spin = − 1

8π2

e2

m2

[
− 1

72
RF 2

µν +
1
90
RµνF

µαF να

+
1
40
RµναβF

µνFαβ +
7

360
(∇αFµν)2 +

1
20
Fµν Fµν − 1

180
(∇αFαµ)2

]
. (5.2)

However, as expected the differences amount to total derivatives only (see (A.8), (A.9)),

L(SI)
scal − L

(HK)
scal =

1
16π2

e2

m2

{
7

360
∇α(FµνFµν;α)

+
1

180

[
∇α(Fµα∇βFµβ)−∇β(Fµα∇αFµβ)

]}
,

L(SI)
spin − L

(HK)
spin = − 1

8π2

e2

m2

{
− 1

45
∇α(FµνFµν;α)

+
1

180

[
∇α(Fµα∇βFµβ)−∇β(Fµα∇αFµβ)

]}
. (5.3)

Similarly, agreement with the Drummond-Hathrell form of the spinor loop effective action,
eq. (1.6), can be seen using a different linear combination of the same total derivatives,

L(SI)
spin − L

(DH)
spin = − 1

8π2

e2

m2

{
1
36
∇α(FµνFµν;α)

+
1
15

[
∇α(Fµα∇βFµβ)−∇β(Fµα∇αFµβ)

]}
. (5.4)

For completeness, let us also give here the form of the scalar loop effective action in the
Drummond-Hathrell basis:

L(DH)
scal = L(HK)

scal +
1

16π2

e2

m2

{
1
30
∇α(FµνFµν;α)

+
1
45

[
∇α(Fµα∇βFµβ)−∇β(Fµα∇αFµβ)

]}
=

1
16π2

e2

m2

[
1
12

(
ξ̄ +

1
12

)
RF 2

µν −
1
90
RµνF

µαF να

− 1
180

RµναβF
µνFαβ +

1
60

(∇αFαµ)2

]
. (5.5)

The expansion (5.1) can be easily pursued to higher orders in F using the formulas of
appendix B [64]. The reduction to a minimal basis of terms becomes increasingly laborious,
of course.

We have also checked by an independent calculation of the a3 coefficients in the DBC
scheme that this scheme indeed reproduces the heat kernel results, L(DBC)

scal,spin = L(HK)
scal,spin.
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As was mentioned already in the introduction, Avramidi [30, 31] has obtained Euler-
Heisenberg type formulas for the heat kernel diagonal of the Laplacian on twisted spin-
vector bundles for the covariantly constant case, ∇αFµν = ∇αRµνκλ = 0. If we specialize
our results (3.8), (4.6) to this case (this just amounts to deleting all derivative terms, and
in particular removes the second integration in (3.8), (4.6)) then they should match with
the result of [31] after expanding to linear order in R there. However, that result is in a
rather implicit form which still requires one to perform integrals over the holonomy group
for extracting individual terms in the effective action; therefore a direct comparison would
be difficult and we have not attempted it here.5

Finally, in the flat space limit our effective Lagrangians (3.8), (4.6) yield representations
of the two-derivative corrections to the scalar and spinor QED EHL’s. Those representa-
tions are similar to but more compact than the ones given in [45] which correspond to a
calculation in the DBC scheme.

6 Discussion

Let us summarize the information contained in our main result, the effective La-
grangians (3.8), (4.6):

1. They contain the full information on the one-loop amplitude involving N photons
and one graviton, with a massive scalar or spinor in the loop, in the limit where all
photon and graviton energies are small compared to the loop mass. In future work,
we hope to obtain these amplitudes in an explicit form, generalizing the one found
for the pure N -photon amplitudes in [7].

2. They can be used to extend the study of the modified dispersion relations for low-
energy photons in an Einstein-Maxwell background, previously restricted to the weak
field expansion in the electromagnetic field [21–23], to the case of strong electromag-
netic fields (although one must keep in mind that for super-strong fields the one-loop
approximation is expected to break down already in the pure QED case [5].).

3. It would also be straightforward to derive from (3.8), (4.6) the corresponding correc-
tions to the imaginary part of the effective Lagrangians, in a form which modifies the
Schwinger representations (1.5) by terms of order R/m2 in the prefactors of the uni-
versal exponentials. This could be used then to calculate the pair production rates
in strong electromagnetic and weak gravitational fields. We find it hard, though,
to think of a realistic scenario where the R/m2 corrections would not be negligible
with respect to the leading QED term. Here it must also be mentioned that Das
and Dunne [66] have shown that the simple relation between the imaginary part of
the effective Lagrangian and the pair creation rate does in general not extend to the
curved space case. However, this is due to effects nonperturbative in the curvature,
and is not expected to happen at finite orders in an expansion in the curvature.

5Very recently Avramidi and Fucci [65] have used the methods of [30, 31] to obtain a more explicit

representation of the heat kernel for this covariantly constant case.
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It should be emphasized that, although we have restricted ourselves here to the approx-
imation linear in the curvature, the formalism developed in this paper applies as well to
the computation of the effective action at higher orders in the curvature. The only caveat
is that, starting at the quadratic level in the curvature, all of the subtleties described in
section 2 will come into play, including the need for a regularization and the introduction
of appropriate worldline counterterms.

Another generalization of interest would be to consider other types of particles in
the loop. Presently no natural worldline representation is known for the case of a loop
graviton coupled to background gravity (although such a representation can perhaps be
obtained along the lines of [67]). However, worldline path integrals representing vector
and antisymmetric tensor particles coupled to background gravity have been recently
constructed in [41].
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A Conventions and useful formulas

The Einstein-Maxwell theory is described by

Γ[g,A] =
∫
dDx

√
g

(
1
κ2
R− 1

4
FµνF

µν

)
(A.1)

where the metric gµν has signature (−,+,+, . . . ,+), g = |det gµν |, and κ2 = 16πGN .
We use the following conventions for the curvature tensors,

[∇µ,∇ν ]V λ = Rµν
λ
ρV

ρ , Rµν = Rλµ
λ
ν , R = Rµµ > 0 on spheres ,

[∇µ,∇ν ]φ = iFµνφ , (A.2)

where V µ is an uncharged vector and φ a charged scalar.
The following identities are used in the text for simplifying the various effective La-

grangians:

Fµα;β F
µβ;α =

1
2
Fµβ;α F

µβ;α , (A.3)

F α
µ Fµβ;αβ =

1
2
Fµν Fµν , (A.4)

Fµν Fαβ R
µανβ =

1
2
Fµν Fαβ R

µναβ . (A.5)

The identities (A.3)–(A.5) are simple consequences of the Bianchi identities

∇αFβγ +∇βFγα +∇γFαβ = 0 , (A.6)

Rαβγδ +Rβγαδ +Rγαβδ = 0 . (A.7)
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The following identities are needed for the comparison of the various effective Lagrangians
at level RFF in section 5:

∇α(FµνFµν;α) = Fµν Fµν + (∇αFµν)2 , (A.8)

∇α
(
F α
µ ∇βFµβ

)
−∇β

(
F α
µ ∇αFµβ

)
= (∇αFαµ)2 − 1

2
(∇αFµν)2

+
1
2
RµναβF

µνFαβ −RµνFµαF να . (A.9)

B Properties of the field-dependent worldline Green’s functions

In this appendix we collect some basic properties of the worldline Green’s functions in a
constant field GB,GF , introduced in (2.37) (see appendix B of [36] for a more thorough
discussion).
GB (GF ) inverts the kinetic operator of the bosonic (fermionic) parts of the worldline

action in a background field with field strength tensor Fµν . In the present conventions, the
quadratic part of the action reads

S0[xµ;F ] =
1
T

∫ 1

0
dτ

[
1
4
ẏµ(τ)gµν(x0)ẏν(τ) +

1
2
iTyµ(τ)Fµν(x0)ẏν(τ)

+
1
2
ψµ(τ)gµν(x0)ψ̇ν(τ)− iTψµ(τ)Fµν(x0)ψν(τ)

]
. (B.1)

Thus formally the worldline propagators are

GB(τ1, τ2) = 2〈τ1 |
(
∂P

2 − 2iFT∂P
)−1
| τ2〉 ,

GF (τ1, τ2) = 2〈τ1 |
(
∂A − 2iFT

)−1
| τ2〉 , (B.2)

where the subscripts “P” and “A” keep track of the boundary conditions. Explicit formulas
for these Green’s functions in the SI scheme were given already in (2.37),

GB(τ1, τ2) =
1

2Z2

(
Z

sin(Z)
e−iZĠB12 +iZĠB12 − 1

)
,

GF (τ1, τ2) = GF12
e−iZĠB12

cos(Z)
.

The right hand sides of these formulas are now to be understood as power series in the
matrix Zµν := TFµν(x0), where the indices are raised and lowered with gµν(x0). The point
of expressing GB,F in terms of the ordinary worldline Green’s functions ĠB, GF is that
it allows one to avoid making a case distinction for the ordering of τ1,2. For our present
purposes also the following derivatives of GB,F are needed,

ĠB(τ1, τ2) =
i

Z

(
Z

sin(Z)
e−iZĠB12 − 1

)
,

G̈B(τ1, τ2) = 2δ12 − 2
Z

sin(Z)
e−iZĠB12 ,

ĠF (τ1, τ2) = 2δ12 + 2iGF12
Z

cos(Z)
e−iZĠB12 . (B.3)
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It will also be convenient to list the coincidence limits of the above five functions:

GB(τ, τ) =
1

2Z2

(
Z cot(Z)− 1

)
,

ĠB(τ, τ) = i cot(Z)− i

Z
,

G̈B(τ, τ) = 2δ(0)− 2Z cot(Z) ,

GF (τ, τ) = −i tan(Z) ,

ĠF (τ, τ) = 2δ(0) + 2Z tan(Z) . (B.4)

We note that GB acts, like GB, in the space of periodic functions obeying the SI condi-
tion (2.11). Its Fourier expansion therefore involves only modes orthogonal to the constant
functions. This has the consequence that∫ 1

0
dτ1,2 G(n)

B (τ1, τ2) = 0 , (B.5)

where n denotes any derivative of GB. Finally, to recover perturbative results one needs
the coefficients in the expansions of GB,F as powers of F . These expansions can be written
as follows,

GB(τ1, τ2) = −2
∞∑
n=0

(2iZ)ngn+2(τ1 − τ2) ,

ĠB(τ1, τ2) = −2
∞∑
n=0

(2iZ)ngn+1(τ1 − τ2) ,

G̈B(τ1, τ2) = 2δ12 − 2
∞∑
n=0

(2iZ)ngn(τ1 − τ2) ,

GF (τ1, τ2) = 2
∞∑
n=0

(2iZ)nfn+1(τ1 − τ2) ,

ĠF (τ1, τ2) = 2δ12 + 2
∞∑
n=1

(2iZ)nfn(τ1 − τ2) . (B.6)

Here the coefficient functions gn, fn are polynomials in τ1−τ2 (apart from factors of sign(τ1−
τ2)). In writing these polynomials one has a choice of variables. In terms of τ = τ1 − τ2

one gets, by a straightforward expansion of (2.37) (see [36, 68]),

gn(τ) =
1
n!
Bn(|τ |)signn(τ) ,

fn(τ) =
1

2(n− 1)!
En−1(|τ |)signn(τ) . (B.7)

Here Bn denotes the nth Bernoulli polynomial, En the nth Euler polynomial.
Alternatively, one can also write the same coefficient functions in terms of the vacuum

Green’s functions [69]. Denoting by Ḡ the coordinate worldline Green’s function with its
coincidence limit subtracted,

Ḡ(τ) := |τ | − τ2 (B.8)
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one finds

g0(τ) = 1 ,

g1(τ) = −1
2
ĠB(τ, 0) = −1

2
˙̄G(τ) ,

g2(τ) = −1
2
GB(τ, 0) = −1

2
Ḡ(τ) +

1
12
,

gn(τ) =

{
Bn
n! + 1

2(n−1)!

∑n/2−1
k=1 f

(
n
2 − 1, k

)
(−Ḡ)k+1(τ) (n > 2 even)

− 1
2n!

∑(n−1)/2
k=1 f

(
n−1

2 , k
)
(k + 1) ˙̄G(τ)(−Ḡ)k(τ) (n > 2 odd)

(B.9)

and

f1(τ) =
1
2
GF (τ, 0) =

1
2

sign(τ) ,

f2(τ) = −1
4
GF (τ, 0)ĠB(τ, 0) = −1

4
sign(τ) ˙̄G(τ) ,

fn(τ) =

{
− 1

2n!

∑n/2
k=1 s

(
n
2 , k
)
k sign(τ) ˙̄G(τ)(−Ḡ)k−1(τ) (n > 2 even)

1
2(n−1)!

∑(n−1)/2
k=1 s

(
n−1

2 , k
)
sign(τ)(−Ḡ)k(τ) (n > 2 odd) .

(B.10)

Here the f(m, k) are Faulhaber numbers and the s(m, k) Salié numbers. Those numbers
can be defined in terms of the Bernoulli numbers as [70]

f(m, k) = (−1)k+1

b(k−1)/2c∑
j=0

1
k − j

(
2k − 2j
k + 1

)(
2m+ 1
2j + 1

)
B2m−2j ,

s(m, k) = 2(−1)k
b(k−1)/2c∑

j=0

1
2k − 2j − 1

(
2k − 2j − 1

k

)(
2m
2j

)(
1− 22m−2j

)
B2m−2j (B.11)

(m ≥ k ≥ 1). For easy reference, let us write down the expansions (B.6) explicitly to order
O(F 2), using the form (B.9), (B.10) for the coefficients:

GB12 = ḠB12 −
1
6
− i

3
ĠB12ḠB12Z +

(
1
3
Ḡ2
B12 −

1
90

)
Z2 +O(Z3) ,

ĠB12 = ĠB12 + 2i
(
ḠB12 −

1
6

)
Z +

2
3
ĠB12ḠB12Z2 +O(Z3) ,

G̈B12 = 2δ12 − 2 + 2iĠB12Z − 4
(
ḠB12 −

1
6

)
Z2 +O(Z3) ,

GF12 = GF12 − iGF12ĠB12Z + 2GF12ḠB12Z2 +O(Z3) ,

ĠF12 = 2δ12 + 2iZGF12 + 2GF12ĠB12Z2 +O(Z3) . (B.12)

References

[1] W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys. 98 (1936)
714 [physics/0605038] [SPIRES].

[2] V. Weisskopf, The electrodynamics of the vacuum based on the quantum theory of the
electron, Kong. Dans. Vid. Selsk. Math-fys. Medd. XIV 6 (1936), english translation in Early
Quantum Electrodynamics: A Source Book, A.I. Miller, Cambridge University Press,
Cambridge U.K. (1994).

– 20 –

http://arxiv.org/abs/physics/0605038
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=PHYSICS/0605038


J
H
E
P
0
3
(
2
0
0
9
)
0
8
6

[3] J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664
[SPIRES].

[4] W. Dittrich and M. Reuter, Effective Lagrangians in Quantum Electrodynamics, Springer
(1985).

[5] W. Dittrich and H. Gies, Probing the Quantum Vacuum, Springer (2000).

[6] G.V. Dunne, Heisenberg-Euler effective Lagrangians: basics and extensions, in Ian Kogan
Memorial Collection, From Fields to Strings: Circumnavigating Theoretical Physics Vol. I,
M.A. Shifman et al. (eds.), World Scientific, Singapore (2004), pg. 445 [hep-th/0406216]
[SPIRES].

[7] L.C. Martin, C. Schubert and V.M. Villanueva Sandoval, On the low-energy limit of the
QED N-photon amplitudes, Nucl. Phys. B 668 (2003) 335 [hep-th/0301022] [SPIRES].

[8] R. Karplus and M. Neuman, Non-linear interactions between electromagnetic fields, Phys.
Rev. 80 (1950) 380 [SPIRES]; The scattering of light by light, Phys. Rev. 83 (1951) 776
[SPIRES];
B. de Tollis, Dispersive Approach to Photon-Photon Scattering, Nuovo Cim. 32 (1964) 757;
The Scattering of Photons by Photons, Nuovo Cim. 35 (1965) 1182;
H. Cheng, E.-C. Tsai and X. Zhu, Photon-photon scattering at high-energy and fixed angle,
Phys. Rev. D 26 (1982) 922 [SPIRES].

[9] Z. Nagy and D.E. Soper, Numerical integration of one-loop Feynman diagrams for N- photon
amplitudes, Phys. Rev. D 74 (2006) 093006 [hep-ph/0610028] [SPIRES];
T. Binoth, G. Heinrich, T. Gehrmann and P. Mastrolia, Six-photon amplitudes, Phys. Lett. B
649 (2007) 422 [hep-ph/0703311] [SPIRES];
G. Ossola, C.G. Papadopoulos and R. Pittau, Numerical Evaluation of Six-Photon
Amplitudes, JHEP 07 (2007) 085 [arXiv:0704.1271] [SPIRES];
C. Bernicot and J.P. Guillet, Six-photon amplitudes in scalar QED, JHEP 01 (2008) 059
[arXiv:0711.4713] [SPIRES].

[10] G. Mahlon, One loop multi-photon helicity amplitudes, Phys. Rev. D 49 (1994) 2197
[hep-ph/9311213] [SPIRES].

[11] G. Mahlon, Use of recursion relations to compute one loop helicity amplitudes,
FERMILAB-CONF-94-421-T, in Proceeding of 4th International Conference on Physics
Beyond the Standard Model, Lake Tahoe (1994), pg. 475, J.F. Gunion, T. Han and J.
Ohnemus eds., World Scientific (1995) [hep-ph/9412350] [SPIRES].

[12] S. Badger, N.E.J. Bjerrum-Bohr and P. Vanhove, Simplicity in the structure of QED and
gravity amplitudes, JHEP 02 (2009) 038 [arXiv:0811.3405] [SPIRES].

[13] V. Costantini, B. De Tollis and G. Pistoni, Nonlinear effects in quantum electrodynamics,
Nuovo Cim. A 2 (1971) 733 [SPIRES].

[14] V.I. Ritus, The Lagrange function of an intensive electromagnetic field and quantum
electrodynamics at small distances, Sov. Phys. JETP 42 (1975) 774 [Zh. Eksp. Teor. Fiz. 69
(1975) 1517] [SPIRES].

[15] M. Reuter, M.G. Schmidt and C. Schubert, Constant external fields in gauge theory and the
spin 0, 1/2, 1 path integrals, Annals Phys. 259 (1997) 313 [hep-th/9610191] [SPIRES].

[16] D. Fliegner, M. Reuter, M.G. Schmidt and C. Schubert, Two-loop Euler-Heisenberg
Lagrangian in dimensional regularization, Theor. Math. Phys. 113 (1997) 1442
[hep-th/9704194] [SPIRES].

– 21 –

http://dx.doi.org/10.1103/PhysRev.82.664
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,82,664
http://arxiv.org/abs/hep-th/0406216
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0406216
http://dx.doi.org/10.1016/S0550-3213(03)00578-9
http://arxiv.org/abs/hep-th/0301022
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0301022
http://dx.doi.org/10.1103/PhysRev.80.380
http://dx.doi.org/10.1103/PhysRev.80.380
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,80,380
http://dx.doi.org/10.1103/PhysRev.83.776
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,83,776
http://dx.doi.org/10.1103/PhysRevD.26.922
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D26,922
http://dx.doi.org/10.1103/PhysRevD.74.093006
http://arxiv.org/abs/hep-ph/0610028
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0610028
http://dx.doi.org/10.1016/j.physletb.2007.04.032
http://dx.doi.org/10.1016/j.physletb.2007.04.032
http://arxiv.org/abs/hep-ph/0703311
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0703311
http://jhep.sissa.it/stdsearch?paper=07%282007%29085
http://arxiv.org/abs/0704.1271
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0704.1271
http://jhep.sissa.it/stdsearch?paper=01%282008%29059
http://arxiv.org/abs/0711.4713
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0711.4713
http://dx.doi.org/10.1103/PhysRevD.49.2197
http://arxiv.org/abs/hep-ph/9311213
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9311213
http://arxiv.org/abs/hep-ph/9412350
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9412350
http://jhep.sissa.it/stdsearch?paper=02%282009%29038
http://arxiv.org/abs/0811.3405
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.3405
http://dx.doi.org/10.1007/BF02736745
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUCIA,A2,733
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA,42,774
http://dx.doi.org/10.1006/aphy.1997.5716
http://arxiv.org/abs/hep-th/9610191
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9610191
http://dx.doi.org/10.1007/BF02634170
http://arxiv.org/abs/hep-th/9704194
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9704194


J
H
E
P
0
3
(
2
0
0
9
)
0
8
6

[17] V.I. Ritus, On the Relation Between the Quantum Electrodynamics of an Intense Field and
the Quantum Electrodynamics at Small Distances (in Russian), Zh. Eksp. Teor. Fiz. 73
(1977) 807 [Sov. Phys. JETP 46 (1977) 423] [SPIRES].

[18] I.K. Affleck, O. Alvarez and N.S. Manton, Pair production at strong coupling in weak
external fields, Nucl. Phys. B 197 (1982) 509 [SPIRES].

[19] S.M. Kuzenko and I.N. McArthur, Low-energy dynamics in N = 2 super QED: two-loop
approximation, JHEP 10 (2003) 029 [hep-th/0308136] [SPIRES].

[20] S.M. Kuzenko and S.J. Tyler, Supersymmetric Euler-Heisenberg effective action: two-loop
results, JHEP 05 (2007) 081 [hep-th/0703269] [SPIRES].

[21] I.T. Drummond and S.J. Hathrell, QED Vacuum Polarization in a Background Gravitational
Field and Its Effect on the Velocity of Photons, Phys. Rev. D 22 (1980) 343 [SPIRES].

[22] J.I. Latorre, P. Pascual and R. Tarrach, Speed of light in nontrivial vacua, Nucl. Phys. B
437 (1995) 60 [hep-th/9408016] [SPIRES].

[23] W. Dittrich and H. Gies, Light propagation in non-trivial QED vacua, Phys. Rev. D 58
(1998) 025004 [hep-ph/9804375] [SPIRES].

[24] G.M. Shore, ’Faster than light’ photons in gravitational fields: causality, anomalies and
horizons, Nucl. Phys. B 460 (1996) 379 [gr-qc/9504041] [SPIRES]; Superluminality and UV
completion, Nucl. Phys. B 778 (2007) 219 [hep-th/0701185] [SPIRES].

[25] T.J. Hollowood and G.M. Shore, Causality and micro-causality in curved spacetime, Phys.
Lett. B 655 (2007) 67 [arXiv:0707.2302] [SPIRES]; The refractive index of curved
spacetime: the fate of causality in QED, Nucl. Phys. B 795 (2008) 138 [arXiv:0707.2303]
[SPIRES]; The causal structure of QED in curved spacetime: analyticity and the refractive
index, JHEP 12 (2008) 091 [arXiv:0806.1019] [SPIRES].

[26] A.O. Barvinsky and G.A. Vilkovisky, The generalized Schwinger-Dewitt technique in gauge
theories and quantum gravity, Phys. Rept. 119 (1985) 1 [SPIRES]; Covariant perturbation
theory. 2: second order in the curvature. General algorithms, Nucl. Phys. B 333 (1990) 471
[SPIRES]; Covariant perturbation theory. 3: spectral representations of the third order
form-factors, Nucl. Phys. B 333 (1990) 512 [SPIRES];
A.O. Barvinsky, Yu.V. Gusev, G.A. Vilkovisky and V.V. Zhytnikov, Covariant perturbation
theory. 4. Third order in the curvature, University of Manitoba preprint, Winnipeg (1993)
unpublished [SPIRES].

[27] Y.V. Gusev, Heat kernel expansion in the covariant perturbation theory, Nucl. Phys. B 807
(2009) 566 [arXiv:0811.1063] [SPIRES].

[28] P.B. Gilkey, The spectral geometry of a Riemannian manifold, J. Diff. Geom. 10 (1975) 601
[SPIRES].

[29] F. Bastianelli, S. Frolov and A.A. Tseytlin, Conformal anomaly of (2, 0) tensor multiplet in
six dimensions and AdS/CFT correspondence, JHEP 02 (2000) 013 [hep-th/0001041]
[SPIRES].

[30] I.G. Avramidi, A New algebraic approach for calculating the heat kernel in quantum gravity,
J. Math. Phys. 37 (1996) 374 [hep-th/9406047] [SPIRES].

[31] I.G. Avramidi, Heat kernel on homogeneous bundles over symmetric spaces,
math.AP/0701489.

– 22 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZETFA,73,807
http://dx.doi.org/10.1016/0550-3213(82)90455-2
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B197,509
http://jhep.sissa.it/stdsearch?paper=10%282003%29029
http://arxiv.org/abs/hep-th/0308136
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0308136
http://jhep.sissa.it/stdsearch?paper=05%282007%29081
http://arxiv.org/abs/hep-th/0703269
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0703269
http://dx.doi.org/10.1103/PhysRevD.22.343
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D22,343
http://dx.doi.org/10.1016/0550-3213(94)00490-6
http://dx.doi.org/10.1016/0550-3213(94)00490-6
http://arxiv.org/abs/hep-th/9408016
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9408016
http://dx.doi.org/10.1103/PhysRevD.58.025004
http://dx.doi.org/10.1103/PhysRevD.58.025004
http://arxiv.org/abs/hep-ph/9804375
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9804375
http://dx.doi.org/10.1016/0550-3213(95)00646-X
http://arxiv.org/abs/gr-qc/9504041
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/9504041
http://dx.doi.org/10.1016/j.nuclphysb.2007.03.034
http://arxiv.org/abs/hep-th/0701185
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0701185
http://dx.doi.org/10.1016/j.physletb.2007.08.073
http://dx.doi.org/10.1016/j.physletb.2007.08.073
http://arxiv.org/abs/0707.2302
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0707.2302
http://dx.doi.org/10.1016/j.nuclphysb.2007.11.034
http://arxiv.org/abs/0707.2303
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0707.2303
http://jhep.sissa.it/stdsearch?paper=12%282008%29091
http://arxiv.org/abs/0806.1019
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.1019
http://dx.doi.org/10.1016/0370-1573(85)90148-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC,119,1
http://dx.doi.org/10.1016/0550-3213(90)90047-H
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B333,471
http://dx.doi.org/10.1016/0550-3213(90)90048-I
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B333,512
http://www-spires.slac.stanford.edu/spires/find/hep/www?r=PRINT-93-0274
http://dx.doi.org/10.1016/j.nuclphysb.2008.08.008
http://dx.doi.org/10.1016/j.nuclphysb.2008.08.008
http://arxiv.org/abs/0811.1063
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.1063
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JDGEA,10,601
http://jhep.sissa.it/stdsearch?paper=02%282000%29013
http://arxiv.org/abs/hep-th/0001041
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0001041
http://dx.doi.org/10.1063/1.531396
http://arxiv.org/abs/hep-th/9406047
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9406047
http://arxiv.org/abs/math.AP/0701489


J
H
E
P
0
3
(
2
0
0
9
)
0
8
6

[32] A.M. Polyakov, Gauge Fields and Strings, Harwood Academic Publishers (1987).

[33] Z. Bern and D.A. Kosower, Color decomposition of one loop amplitudes in gauge theories,
Nucl. Phys. B 362 (1991) 389 [SPIRES]; The Computation of loop amplitudes in gauge
theories, Nucl. Phys. B 379 (1992) 451 [SPIRES].

[34] M.J. Strassler, Field theory without Feynman diagrams: one loop effective actions, Nucl.
Phys. B 385 (1992) 145 [hep-ph/9205205] [SPIRES].

[35] M.G. Schmidt and C. Schubert, On the calculation of effective actions by string methods,
Phys. Lett. B 318 (1993) 438 [hep-th/9309055] [SPIRES].

[36] C. Schubert, Perturbative quantum field theory in the string-inspired formalism, Phys. Rept.
355 (2001) 73 [hep-th/0101036] [SPIRES].

[37] F. Bastianelli and P. van Nieuwenhuizen, Path integrals and anomalies in curved space,
Cambridge University Press, Cambridge U.K. (2006).

[38] F. Bastianelli and A. Zirotti, Worldline formalism in a gravitational background, Nucl. Phys.
B 642 (2002) 372 [hep-th/0205182] [SPIRES].

[39] F. Bastianelli, O. Corradini and A. Zirotti, Dimensional regularization for SUSY σ-models
and the worldline formalism, Phys. Rev. D 67 (2003) 104009 [hep-th/0211134] [SPIRES].

[40] F. Bastianelli, O. Corradini and A. Zirotti, BRST treatment of zero modes for the worldline
formalism in curved space, JHEP 01 (2004) 023 [hep-th/0312064] [SPIRES].

[41] F. Bastianelli, P. Benincasa and S. Giombi, Worldline approach to vector and antisymmetric
tensor fields, JHEP 04 (2005) 010 [hep-th/0503155] [SPIRES]; Worldline approach to vector
and antisymmetric tensor fields. II, JHEP 10 (2005) 114 [hep-th/0510010] [SPIRES].

[42] F. Bastianelli and C. Schubert, One loop photon graviton mixing in an electromagnetic field.
I, JHEP 02 (2005) 069 [gr-qc/0412095] [SPIRES];
F. Bastianelli, U. Nucamendi, C. Schubert and V.M. Villanueva, One loop photon-graviton
mixing in an electromagnetic field: part 2, JHEP 11 (2007) 099 [arXiv:0710.5572]
[SPIRES]; Photon-graviton mixing in an electromagnetic field, J. Phys. A 41 (2008) 164048
[arXiv:0711.0992] [SPIRES].

[43] D. Fliegner, M.G. Schmidt and C. Schubert, The Higher derivative expansion of the effective
action by the string inspired method. Part 1, Z. Phys. C 64 (1994) 111 [hep-ph/9401221]
[SPIRES].

[44] D. Fliegner, P. Haberl, M.G. Schmidt and C. Schubert, The higher derivative expansion of
the effective action by the string inspired method. II, Annals Phys. 264 (1998) 51
[hep-th/9707189] [SPIRES].

[45] V.P. Gusynin and I.A. Shovkovy, Derivative expansion for the one-loop effective Lagrangian
in QED, Can. J. Phys. 74 (1996) 282 [hep-ph/9509383] [SPIRES];
V.P. Gusynin and I.A. Shovkovy, Derivative expansion of the effective action for QED in
2+1 and 3+1 dimensions, J. Math. Phys. 40 (1999) 5406 [hep-th/9804143] [SPIRES].

[46] F.A. Dilkes and D.G.C. McKeon, Off-diagonal elements of the DeWitt expansion from the
quantum mechanical path integral, Phys. Rev. D 53 (1996) 4388 [hep-th/9509005] [SPIRES].
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